

EUROPEAN COMMITTEE FOR STANDARDIZATION
C O M I T É E U R O P É E N D E N O R M A L I S A T I O N
E U R O P Ä I S C H E S K O M I T E E F Ü R N O R M U N G

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2023 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.

Ref. No.:CWA 16926-78:2023 E

CEN

WORKSHOP

AGREEMENT

 CWA 16926-78

 January 2023

ICS 35.240.40; 35.200; 35.240.15

English version

 Extensions for Financial Services (XFS) interface
specification Release 3.50 - Part 78: Biometrics Device

Class Interface Proposal - Programmer's Reference -
Migration from Version 3.40 (CWA 16926:2020) to

Version 3.50 (this CWA)

This CEN Workshop Agreement has been drafted and approved by a Workshop of representatives of interested parties, the
constitution of which is indicated in the foreword of this Workshop Agreement.

The formal process followed by the Workshop in the development of this Workshop Agreement has been endorsed by the
National Members of CEN but neither the National Members of CEN nor the CEN-CENELEC Management Centre can be held
accountable for the technical content of this CEN Workshop Agreement or possible conflicts with standards or legislation.

This CEN Workshop Agreement can in no way be held as being an official standard developed by CEN and its Members.

This CEN Workshop Agreement is publicly available as a reference document from the CEN Members National Standard Bodies.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France,
Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North
Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and United Kingdom.

2

Table of Contents

European Foreword .. 4

1. Introduction .. 7

1.1 Background to Release 3.50 ... 7

1.2 XFS Service-Specific Programming ... 7

2. Biometric Devices.. 9

2.1 Enrollment .. 9

2.2 Biometric Matching .. 9

2.3 Biometric Device Types .. 10

2.4 Biometric Data Security .. 10

3. References ... 11

4. Info Commands ... 12

4.1 WFS_INF_BIO_STATUS .. 12

4.2 WFS_INF_BIO_CAPABILITIES .. 15

4.3 WFS_INF_BIO_STORAGE_INFO .. 20

4.4 WFS_INF_BIO_KEY_INFO ... 21

5. Execute Commands .. 22

5.1 WFS_CMD_BIO_READ .. 22

5.2 WFS_CMD_BIO_IMPORT .. 25

5.3 WFS_CMD_BIO_MATCH ... 26

5.4 WFS_CMD_BIO_SET_MATCH .. 29

5.5 WFS_CMD_BIO_CLEAR .. 30

5.6 WFS_CMD_BIO_RESET .. 31

5.7 WFS_CMD_BIO_SET_DATA_PERSISTENCE .. 32

5.8 WFS_CMD_BIO_SET_GUIDANCE_LIGHT ... 33

5.9 WFS_CMD_BIO_POWER_SAVE_CONTROL ... 35

5.10 WFS_CMD_BIO_SYNCHRONIZE_COMMAND ... 36

6. Events ... 37

6.1 WFS_EXEE_BIO_PRESENTSUBJECT ... 37

6.2 WFS_EXEE_BIO_SUBJECTDETECTED ... 38

6.3 WFS_EXEE_BIO_REMOVESUBJECT... 39

6.4 WFS_SRVE_BIO_SUBJECTREMOVED .. 40

6.5 WFS_SRVE_BIO_DATACLEARED ... 41

6.6 WFS_EXEE_BIO_ORIENTATION .. 42

6.7 WFS_SRVE_BIO_DEVICEPOSITION .. 43

6.8 WFS_SRVE_BIO_POWER_SAVE_CHANGE .. 44

CWA 16926-78:2023 (E)

3

7. Biometric Device Command Flows – Application Guidelines 45

7.1 Biometric Enrollment Command Flow ... 45

7.2 Biometric Match Command Flow – Separate Scan and Match ... 46

7.3 Biometric Match Command Flow – Combined Scan and Match ... 47

7.4 Biometric Scan-Only Command Flow .. 48

8. C - Header file .. 49

CWA 16926-78:2023 (E)

4

European Foreword

This CEN Workshop Agreement has been developed in accordance with the CEN-CENELEC Guide 29

“CEN/CENELEC Workshop Agreements – The way to rapid consensus” and with the relevant provisions of

CEN/CENELEC Internal Regulations – Part 2. It was approved by a Workshop of representatives of interested

parties on 2022-11-08, the constitution of which was supported by CEN following several public calls for

participation, the first of which was made on 1998-06-24. However, this CEN Workshop Agreement does not

necessarily include all relevant stakeholders.

The final text of this CEN Workshop Agreement was provided to CEN for publication on 2022-11-18.

The following organizations and individuals developed and approved this CEN Workshop Agreement:

• AURIGA SPA

• CIMA SPA

• DIEBOLD NIXDORF SYSTEMS GMBH

• FIS BANKING SOLUTIONS UK LTD (OTS)

• FUJITSU TECHNOLOGY SOLUTIONS

• GLORY LTD

• GRG BANKING EQUIPMENT HK CO LTD

• HITACHI CHANNEL SOLUTIONS CORP

• HYOSUNG TNS INC

• JIANGSU GUOGUANG ELECTRONIC INFORMATION TECHNOLOGY

• KAL

• KEBA HANDOVER AUTOMATION GMBH

• NCR FSG

• NEXUS SOFTWARE

• OBERTHUR CASH PROTECTION

• OKI ELECTRIC INDUSTRY SHENZHEN

• SALZBURGER BANKEN SOFTWARE

• SECURE INNOVATION

• SIGMA SPA

It is possible that some elements of this CEN/CWA may be subject to patent rights. The CEN-CENELEC policy on

patent rights is set out in CEN-CENELEC Guide 8 “Guidelines for Implementation of the Common IPR Policy on

Patents (and other statutory intellectual property rights based on inventions)”. CEN shall not be held responsible for

identifying any or all such patent rights.

The Workshop participants have made every effort to ensure the reliability and accuracy of the technical and non-

technical content of CWA 16926-19, but this does not guarantee, either explicitly or implicitly, its correctness.

Users of CWA 16926-19 should be aware that neither the Workshop participants, nor CEN can be held liable for

damages or losses of any kind whatsoever which may arise from its application. Users of CWA 16926-19 do so on

their own responsibility and at their own risk.

The CWA is published as a multi-part document, consisting of:

Part 1: Application Programming Interface (API) - Service Provider Interface (SPI) - Programmer's Reference

Part 2: Service Classes Definition - Programmer's Reference

Part 3: Printer and Scanning Device Class Interface - Programmer's Reference

Part 4: Identification Card Device Class Interface - Programmer's Reference

CWA 16926-78:2023 (E)

5

Part 5: Cash Dispenser Device Class Interface - Programmer's Reference

Part 6: PIN Keypad Device Class Interface - Programmer's Reference

Part 7: Check Reader/Scanner Device Class Interface - Programmer's Reference

Part 8: Depository Device Class Interface - Programmer's Reference

Part 9: Text Terminal Unit Device Class Interface - Programmer's Reference

Part 10: Sensors and Indicators Unit Device Class Interface - Programmer's Reference

Part 11: Vendor Dependent Mode Device Class Interface - Programmer's Reference

Part 12: Camera Device Class Interface - Programmer's Reference

Part 13: Alarm Device Class Interface - Programmer's Reference

Part 14: Card Embossing Unit Device Class Interface - Programmer's Reference

Part 15: Cash-In Module Device Class Interface - Programmer's Reference

Part 16: Card Dispenser Device Class Interface - Programmer's Reference

Part 17: Barcode Reader Device Class Interface - Programmer's Reference

Part 18: Item Processing Module Device Class Interface - Programmer's Reference

Part 19: Biometrics Device Class Interface - Programmer's Reference

Parts 20 - 28: Reserved for future use.

Parts 29 through 47 constitute an optional addendum to this CWA. They define the integration between the SNMP

standard and the set of status and statistical information exported by the Service Providers.

Part 29: XFS MIB Architecture and SNMP Extensions - Programmer’s Reference

Part 30: XFS MIB Device Specific Definitions - Printer Device Class

Part 31: XFS MIB Device Specific Definitions - Identification Card Device Class

Part 32: XFS MIB Device Specific Definitions - Cash Dispenser Device Class

Part 33: XFS MIB Device Specific Definitions - PIN Keypad Device Class

Part 34: XFS MIB Device Specific Definitions - Check Reader/Scanner Device Class

Part 35: XFS MIB Device Specific Definitions - Depository Device Class

Part 36: XFS MIB Device Specific Definitions - Text Terminal Unit Device Class

Part 37: XFS MIB Device Specific Definitions - Sensors and Indicators Unit Device Class

Part 38: XFS MIB Device Specific Definitions - Camera Device Class

Part 39: XFS MIB Device Specific Definitions - Alarm Device Class

Part 40: XFS MIB Device Specific Definitions - Card Embossing Unit Class

Part 41: XFS MIB Device Specific Definitions - Cash-In Module Device Class

Part 42: Reserved for future use.

Part 43: XFS MIB Device Specific Definitions - Vendor Dependent Mode Device Class

Part 44: XFS MIB Application Management

Part 45: XFS MIB Device Specific Definitions - Card Dispenser Device Class

Part 46: XFS MIB Device Specific Definitions - Barcode Reader Device Class

Part 47: XFS MIB Device Specific Definitions - Item Processing Module Device Class

Part 48: XFS MIB Device Specific Definitions - Biometrics Device Class

Parts 49 - 60 are reserved for future use.

Part 61: Application Programming Interface (API) - Migration from Version 3.40 (CWA 16296:2020) to Version

3.50 (this CWA) - Service Provider Interface (SPI) - Programmer's Reference

Part 62: Printer and Scanning Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version

CWA 16926-78:2023 (E)

6

3.50 (this CWA) - Programmer's Reference

Part 63: Identification Card Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version

3.50 (this CWA) - Programmer's Reference

Part 64: Cash Dispenser Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50

(this CWA) - Programmer's Reference

Part 65: PIN Keypad Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50

(this CWA) - Programmer's Reference

Part 66: Check Reader/Scanner Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to

Version 3.50 (this CWA) - Programmer's Reference

Part 67: Depository Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50 (this

CWA) - Programmer's Reference

Part 68: Text Terminal Unit Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version

3.50 (this CWA) - Programmer's Reference

Part 69: Sensors and Indicators Unit Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to

Version 3.50 (this CWA) - Programmer's Reference

Part 70: Vendor Dependent Mode Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to

Version 3.50 (this CWA) - Programmer's Reference

Part 71: Camera Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50 (this

CWA) - Programmer's Reference

Part 72: Alarm Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50 (this

CWA) - Programmer's Reference

Part 73: Card Embossing Unit Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to

Version 3.50 (this CWA) - Programmer's Reference

Part 74: Cash-In Module Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50

(this CWA) - Programmer's Reference

Part 75: Card Dispenser Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50

(this CWA) - Programmer's Reference

Part 76: Barcode Reader Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50

(this CWA) - Programmer's Reference

Part 77: Item Processing Module Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to

Version 3.50 (this CWA) - Programmer's Reference

Part 78: Biometric Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50 (this

CWA) - Programmer's Reference

In addition to these Programmer's Reference specifications, the reader of this CWA is also referred to a

complementary document, called Release Notes. The Release Notes contain clarifications and explanations on the

CWA specifications, which are not requiring functional changes. The current version of the Release Notes is

available online from: https://www.cencenelec.eu/areas-of-work/cen-sectors/digital-society-cen/cwa-download-

area/.

The information in this document represents the Workshop's current views on the issues discussed as of the date of

publication. It is provided for informational purposes only and is subject to change without notice. CEN makes no

warranty, express or implied, with respect to this document.

Revision History:

3.40 December 06, 2019 Initial Release.

3.50 November 18, 2022 For a description of changes from version 3.40 to version

3.50 see the BIO 3.50 Migration document.

CWA 16926-78:2023 (E)

7

1. Introduction

1.1 Background to Release 3.50

The CEN/XFS Workshop aims to promote a clear and unambiguous specification defining a multi-vendor software

interface to financial peripheral devices. The XFS (eXtensions for Financial Services) specifications are developed

within the CEN (European Committee for Standardization/Information Society Standardization System) Workshop

environment. CEN Workshops aim to arrive at a European consensus on an issue that can be published as a CEN

Workshop Agreement (CWA).

The CEN/XFS Workshop encourages the participation of both banks and vendors in the deliberations required to

create an industry standard. The CEN/XFS Workshop achieves its goals by focused sub-groups working

electronically and meeting quarterly.

Release 3.50 of the XFS specification is based on a C API and is delivered with the continued promise for the

protection of technical investment for existing applications. This release of the specification extends the

functionality and capabilities of the existing devices covered by the specification:

• Addition of E2E security

• PIN Password Entry

1.2 XFS Service-Specific Programming

The service classes are defined by their service-specific commands and the associated data structures, error codes,

messages, etc. These commands are used to request functions that are specific to one or more classes of Service

Providers, but not all of them, and therefore are not included in the common API for basic or administration

functions.

When a service-specific command is common among two or more classes of Service Providers, the syntax of the

command is as similar as possible across all services, since a major objective of XFS is to standardize function

codes and structures for the broadest variety of services. For example, using the WFSExecute function, the

commands to read data from various services are as similar as possible to each other in their syntax and data

structures.

In general, the specific command set for a service class is defined as a superset of the specific capabilities likely to

be provided by the developers of the services of that class; thus any particular device will normally support only a

subset of the defined command set.

There are three cases in which a Service Provider may receive a service-specific command that it does not support:

The requested capability is defined for the class of Service Providers by the XFS specification, the particular vendor

implementation of that service does not support it, and the unsupported capability is not considered to be

fundamental to the service. In this case, the Service Provider returns a successful completion, but does no operation.

An example would be a request from an application to turn on a control indicator on a passbook printer; the Service

Provider recognizes the command, but since the passbook printer it is managing does not include that indicator, the

Service Provider does no operation and returns a successful completion to the application.

The requested capability is defined for the class of Service Providers by the XFS specification, the particular vendor

implementation of that service does not support it, and the unsupported capability is considered to be fundamental

to the service. In this case, a WFS_ERR_UNSUPP_COMMAND error for Execute commands or

WFS_ERR_UNSUPP_CATEGORY error for Info commands is returned to the calling application. An example

would be a request from an application to a cash dispenser to retract items where the dispenser hardware does not

have that capability; the Service Provider recognizes the command but, since the cash dispenser it is managing is

unable to fulfil the request, returns this error.

The requested capability is not defined for the class of Service Providers by the XFS specification. In this case, a

WFS_ERR_INVALID_COMMAND error for Execute commands or WFS_ERR_INVALID_CATEGORY error

for Info commands is returned to the calling application.

This design allows implementation of applications that can be used with a range of services that provide differing

subsets of the functionalities that are defined for their service class. Applications may use the WFSGetInfo and

WFSAsyncGetInfo commands to inquire about the capabilities of the service they are about to use, and modify

their behavior accordingly, or they may use functions and then deal with error returns to make decisions as to how

CWA 16926-78:2023 (E)

8

to use the service.

CWA 16926-78:2023 (E)

9

2. Biometric Devices

Biometrics refers to metrics related to human characteristics and biology. Biometrics authentication can be used as

a form of identification and/or access control. This is an overview of biometrics, as well as an introduction to the

terminology used in this document. It introduces to XFS the concept of scanning a person’s biometric data in raw

image form (raw biometric data), then processing it into a smaller more concise form that is easier to manage

(biometric template data). The first scan of a user is called ENROLLMENT as the user is effectively being

enrolled into a scheme by recording their biometric data. Thereafter subsequent scans of the user can be compared

to the original data in order to verify who they say they are (VERIFICATION), or alternatively used to identify

them as a specific individual (IDENTIFICATION). These concepts are explained below in more detail.

2.1 Enrollment

The first time an individual uses a biometric device it is called Enrollment. During enrollment, biometric data from

an individual is captured and stored somewhere, for example on a smart card or in a server/host database. Normally

the raw biometric data captured will be processed and converted to a smaller format that is used for subsequent

comparison. This format is referred to in this document as a template. A template is a synthesis of the relevant

characteristics extracted from the original raw data. Elements of the biometric data that are not used in the matching

algorithm are discarded in the template to reduce the file size and to protect the identity of the enrollee.

2.2 Biometric Matching

During the matching phase, the obtained template is passed to a matcher which compares it to other existing

templates and a probable match is calculated, either as a Boolean true or false or as a threshold indicating the

likelihood of a match. With regard to matching, biometric systems commonly have two different basic modes of

operation: Verification and Identification:

Verification: performs a one-to-one comparison of captured biometric data with a specific template in order to

verify that an individual is the person they claim to be.

Identification: the system performs a one-to-many comparison of captured biometric data in order to establish a

person’s identity.

Note: The above diagram does not make any assumptions about where the actual matching takes place. The

interface provided is versatile enough to be able to support three basic Biometric systems:

Match on server: The biometric template data is stored on a server or host. When scanning takes place biometric

data is sent to the server, which does the actual identification or verification.

Match on card: The biometric enrollment data for an individual is stored on a smart card/personal device. The

device scans a user then returns the biometric template information to the application. This data is then sent to the

card, and an application on the smart card chip does the comparison, returning the result to the application.

Match on device: The biometric enrollment data for an individual is stored on a smart card or host. The enrollment

data is read from the card or host and into the device, which then compares it to scanned information, returning the

result to the application.

CWA 16926-78:2023 (E)

10

2.3 Biometric Device Types

There are many different varieties of biometric hardware, this XFS biometrics specification supports three main

different types of device:

1. Devices which only support scanning and returning biometric data

In this case the device is a simple biometric scanning device, User data is scanned using the

WFS_CMD_BIO_READ command, but matching is performed externally, for example on a smart card or

on a server. In this case the WFS_CMD_BIO_MATCH and WFS_CMD_BIO_SET_MATCH commands

are not supported.

2. Devices which support a separate scan and match functionality

These devices scan and perform a comparison as separate operations. Existing biometric data is first

imported using the WFS_CMD_BIO_IMPORT command. When the WFS_CMD_BIO_READ command

is then called the scanned user data is temporarily stored. The WFS_CMD_BIO_MATCH command is

then called to perform the comparison and return the result.

3. Devices which support a combined scan and match functionality

These devices scan and perform a comparison as a single operation. Existing biometric data is first

imported using the WFS_CMD_BIO_IMPORT command. In this case the

WFS_CMD_BIO_SET_MATCH command must be called first, either as a one -time call or before each

WFS_CMD_BIO_READ command. The purpose of the WFS_CMD_BIO_SET_MATCH command is to

set the criteria for matching. When the WFS_CMD_BIO_READ command is then called it scans the

user’s biometric data and also performs the comparison as a single operation. The

WFS_CMD_BIO_MATCH command is then called to return the result of the comparison.

2.4 Biometric Data Security

It is recommended that biometric data should be treated with the same strict caution as any other identifying and

sensitive information. A well designed biometric data handling architecture should always be designed to protect

against internal tampering, external attacks and other malicious threats. There are various ways of implementing

good security of which three are listed below:

• Multi Modal Biometrics

A Uni-Modal biometric system relies on data taken from a single source of information for authentication,

for example a single fingerprint reading device. In contrast, Multi-Modal biometric systems work on the

premise that it is more secure to accept information from two or more biometric inputs. As an example a

user could provide a fingerprint in addition to facial recognition, a positive match from two physical

characteristics improves the chances of a positive identification and mitigates the possibility that biometric

data has been cloned.

• Data Encryption

Biometric data should be encrypted where possible. The BIO specification provides for this by allowing an

encryption key to be specified whenever data is exchanged between an application and a BIO Service

Provider. In addition, the key management interface methods of the PIN device class can be used for key

management. This can be done by using the standard XFS compound device mechanism to implement a

BIO Service provider as a compound device together with a PIN device class Service Provider. The device

compounding mechanism is described in the XFS API specification. In this case the BIO Service Provider

would implement the biometric methods necessary to read and return data, while the key loading,

reporting etc,. functions of the PIN Service Provider interface would be implemented in order to provide

key management.

CWA 16926-78:2023 (E)

11

3. References

1. XFS Application Programming Interface (API)/Service Provider Interface (SPI), Programmer’s Reference,

Revision 3.4050

2. ANSI INCITS 381-2004 Information Technology - Finger Image-Based Data Interchange Format.

3. ANSI INCITS 378-2004 Information Technology - Finger Minutiae Format for Data Interchange.

4. ISO/IEC 19794-4:2005 Information technology - Biometric data interchange formats - Part 4: Finger image

data.

5. ISO/IEC 19794-2:2005 Information technology - Biometric data interchange formats - Part 2: Finger minutiae

data.

CWA 16926-78:2023 (E)

12

4. Info Commands

4.1 WFS_INF_BIO_STATUS

Description This command is used to obtain the status of the biometric device. It may also return vendor-

specific status information.

Input Param None.

Output Param LPWFSBIOSTATUS lpStatus;

typedef struct _wfs_bio_status

 {

 WORD fwDevice;

 DWORD dwSubject;

 BOOL bCaptured;

 DWORD dwDataPersistence;

 DWORD dwRemainingStorage;

 LPSTR lpszExtra;

 WORD wDevicePosition;

 DWORD dwGuidLights[WFS_BIO_GUIDLIGHTS_SIZE];

 USHORT usPowerSaveRecoveryTime;

 WORD wAntiFraudModule;

 } WFSBIOSTATUS, *LPWFSBIOSTATUS;

fwDevice

Specifies the state of the biometric device as one of the following values:

Value Meaning

WFS_BIO_DEVONLINE The device is present, powered on and online

(i.e. operational, not busy processing a

request and not in an error state).

WFS_BIO_DEVOFFLINE The device is offline (e.g. the operator has

taken the device offline by turning a switch).

WFS_BIO_DEVPOWEROFF The device is powered off or physically not

connected.

WFS_BIO_DEVNODEVICE There is no device intended to be there; e.g.

this type of self -service machine does not

contain such a device or it is internally not

configured.

WFS_BIO_DEVHWERROR The device is present but inoperable due to a

hardware fault that prevents it from being

used.

WFS_BIO_DEVUSERERROR The device is present but a person is

preventing proper device operation. The

application should suspend the device

operation or remove the device from service

until the Service Provider generates a device

state change event indicating the condition

of the device has changed e.g. the error is

removed (WFS_BIO_DEVONLINE) or a

permanent error condition has occurred

(WFS_BIO_DEVHWERROR).

WFS_BIO_DEVBUSY The device is busy and unable to process an

Execute command at this time.

WFS_BIO_DEVFRAUDATTEMPT The device is present but is inoperable

because it has detected a fraud attempt.

WFS_BIO_DEVPOTENTIALFRAUD The device has detected a potential fraud

attempt and is capable of remaining in

service. In this case the application should

make the decision as to whether to take the

device offline.

CWA 16926-78:2023 (E)

13

dwSubject

Specifies the state of the subject to be scanned (e.g. finger, palm, retina, etc).) as one of the

following values:

Value Meaning

WFS_BIO_SUBJECTPRESENT The subject to be scanned is on the scanning

position.

WFS_BIO_SUBJECTNOTPRESENT The subject to be scanned is not on the

scanning position.

WFS_BIO_SUBJECTUNKNOWN The subject to be scanned cannot be

determined with the device in its current

state (e.g. the value of fwDevice is

WFS_BIO_DEVNODEVICE,

WFS_BIO_DEVPOWEROFF,

WFS_BIO_DEVOFFLINE, or

WFS_BIO_DEVHWERROR).

WFS_BIO_SUBJECTNOTSUPPORTED The physical device does not support the

ability to report whether or not a subject is

on the scanning position.

bCaptured

Indicates whether or not scanned biometric data has been captured using the

WFS_CMD_BIO_READ command and is currently stored and ready for comparison. TRUE if

data has been captured and is stored, FALSE if no scanned data is present. This will be set to

FALSE when scanned data is cleared using the WFS_CMD_BIO_CLEAR command.

dwDataPersistence

Specifies the current data persistence mode. The data persistence mode controls how biometric

data that has been captured using the WFS_CMD_BIO_READ command will be handled. For

possible values see the description of the fwPersistenceModes capability field.

dwRemainingStorage

Specifies how much of the reserved storage specified by the dwTemplateStorage capability is

remaining for the storage of templates in bytes. This will be zero if not reported.

lpszExtra

Pointer to a list of vendor-specific, or any other extended, information. The information is

returned as a series of “key=value” strings so that it is easily extensible by Service Providers.

Each string is null-terminated, with the final string terminating with two null characters. An

empty list may be indicated by either a NULL pointer or a pointer to two consecutive null

characters.

dwGuidLights [...]

Specifies the state of the guidance light indicators. The elements of this array can be accessed by

using the predefined index values specified for the dwGuidLights [] field in the capabilities.

Vendor specific guidance lights are defined starting from the end of the array. The maximum

guidance light index is WFS_BIO_GUIDLIGHTS_MAX.

Specifies the state of the guidance light indicator as

WFS_BIO_GUIDANCE_NOT_AVAILABLE, WFS_BIO_GUIDANCE_OFF or a combination

of the following flags consisting of one type B, optionally one type C and optionally type D.

Value Meaning Type

WFS_BIO_GUIDANCE_NOT_AVAILABLE The status is not available. A

WFS_BIO_GUIDANCE_OFF The light is turned off. A

WFS_BIO_GUIDANCE_SLOW_FLASH The light is blinking slowly. B

WFS_BIO_GUIDANCE_MEDIUM_FLASH The light is blinking medium B

frequency.

WFS_BIO_GUIDANCE_QUICK_FLASH The light is blinking quickly. B

WFS_BIO_GUIDANCE_CONTINUOUS The light is turned on B

continuous (steady).

WFS_BIO_GUIDANCE_RED The light is red. C

WFS_BIO_GUIDANCE_GREEN The light is green. C

WFS_BIO_GUIDANCE_YELLOW The light is yellow. C

WFS_BIO_GUIDANCE_BLUE The light is blue. C

WFS_BIO_GUIDANCE_CYAN The light is cyan. C

CWA 16926-78:2023 (E)

14

WFS_BIO_GUIDANCE_MAGENTA The light is magenta. C

WFS_BIO_GUIDANCE_WHITE The light is white. C

WFS_BIO_GUIDANCE_ENTRY The light is in the entry state. D

WFS_BIO_GUIDANCE_EXIT The light is in the exit state. D

dwGuidLights [WFS_BIO_GUIDANCE_BIO]

Specifies the state of the guidance light indicator on the biometric device.

wDevicePosition

Specifies the device position. The device position value is independent of the fwDevice value, e.g.

when the device position is reported as WFS_BIO_DEVICENOTINPOSITION, fwDevice can

have any of the values defined above (including WFS_BIO_DEVONLINE or

WFS_BIO_DEVOFFLINE). This value is one of the following values:

Value Meaning

WFS_BIO_DEVICEINPOSITION The device is in its normal operating

position, or is fixed in place and cannot be

moved.

WFS_BIO_DEVICENOTINPOSITION The device has been removed from its

normal operating position.

WFS_BIO_DEVICEPOSUNKNOWN Due to a hardware error or other condition,

the position of the device cannot be

determined.

WFS_BIO_DEVICEPOSNOTSUPP The physical device does not have the

capability of detecting the position.

usPowerSaveRecoveryTime

Specifies the actual number of seconds required by the device to resume its normal operational

state from the current power saving mode. This value is zero if either the power saving mode has

not been activated or no power save control is supported.

wAntiFraudModule

Specifies the state of the anti-fraud module as one of the following values:

Value Meaning

WFS_BIO_AFMNOTSUPP No anti-fraud module is available.

WFS_BIO_AFMOK Anti-fraud module is in a good state and no

foreign device is detected.

WFS_BIO_AFMINOP Anti-fraud module is inoperable.

WFS_BIO_AFMDEVICEDETECTED Anti-fraud module detected the presence of a

foreign device.

WFS_BIO_AFMUNKNOWN The state of the anti-fraud module cannot be

determined.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments Applications which rely on the lpszExtra field may not be device or vendor-independent.

In the case where communication with the device has been lost, the fwDevice field will report

WFS_BIO_DEVPOWEROFF when the device has been removed or

WFS_BIO_DEVHWERROR if the communications are unexpectedly lost. All other fields should

contain a value based on the following rules and priority:

1. Report the value as unknown.

2. Report the value as a general h/w error.

3. Report the value as the last known value.

CWA 16926-78:2023 (E)

15

4.2 WFS_INF_BIO_CAPABILITIES

Description This command retrieves the capabilities of the biometric device. It may also return vendor specific

capability information.

Input Param None.

Output Param LPWFSBIOCAPS lpCaps;

typedef struct _wfs_bio_caps

 {

 WORD wClass;

 DWORD fwType;

 BOOL bCompound;

 USHORT usMaxCapture;

 DWORD dwTemplateStorage;

 DWORD fwDataFormats;

 DWORD fwEncryptionAlgorithms;

 WORD fwStorage;

 DWORD fwPersistenceModes;

 DWORD dwMatchSupported;

 WORD fwScanModes;

 WORD fwCompareModes;

 DWORD fwClearData;

 LPSTR lpszExtra;

 DWORD dwGuidLights[WFS_BIO_GUIDLIGHTS_SIZE];

 BOOL bPowerSaveControl;

 BOOL bAntiFraudModule;

 LPDWORD lpdwSynchronizableCommands;

 } WFSBIOCAPS, *LPWFSBIOCAPS;

wClass

Specifies the logical service class as WFS_SERVICE_CLASS_BIO.

fwType

Specifies the type of biometric device as a combination of the following flags:

Value Meaning

WFS_BIO_TYPE_FACIAL_FEATURES The biometric device supports facial

recognition scanning.

WFS_BIO_TYPE_VOICE The biometric device supports voice

recognition.

WFS_BIO_TYPE_FINGERPRINT The biometric device supports fingerprint

scanning.

WFS_BIO_TYPE_FINGERVEIN The biometric device supports finger vein

scanning.

WFS_BIO_TYPE_IRIS The biometric device supports iris scanning.

WFS_BIO_TYPE_RETINA The biometric device supports retina

scanning.

WFS_BIO_TYPE_HAND_GEOMETRY The biometric device supports hand

geometry scanning.

WFS_BIO_TYPE_THERMAL_FACE The biometric device supports thermal face

image scanning.

WFS_BIO_TYPE_THERMAL_HAND The biometric device supports thermal hand

image scanning.

WFS_BIO_TYPE_PALM_VEIN The biometric device supports palm vein

scanning.

WFS_BIO_TYPE_SIGNATURE The biometric device supports signature

scanning.

bCompound

Specifies whether the biometric device is part of a compound device.

usMaxCapture

Specifies the maximum number of times that the device can attempt to capture biometric data

during a WFS_CMD_BIO_READ command. If this is zero then the device or service provider

determines how many captures will be attempted.

CWA 16926-78:2023 (E)

16

dwTemplateStorage

Specifies the storage space that is reserved on the device for the storage of templates in bytes.

This will be set to zero if not reported or unknown.

fwDataFormats

Specifies the supported biometric raw data and template data formats reported as a combination of

the following flags:

Value Meaning

WFS_BIO_ISOFID Raw ISO FID format [Ref. 4].

WFS_BIO_ISOFMD ISO FMD template format [Ref. 5].

WFS_BIO_ANSIFID Raw ANSI FID format [Ref. 2].

WFS_BIO_ANSIFMD ANSI FMD template format [Ref. 3].

WFS_BIO_QSO Raw QSO image format.

WFS_BIO_WSQ WSQ image format.

WFS_BIO_RESERVED_RAW_1 Reserved for a vendor-defined Raw format.

WFS_BIO_RESERVED_TEMPLATE_1 Reserved for a vendor-defined Template

format.

WFS_BIO_RESERVED_RAW_2 Reserved for a vendor-defined Raw format.

WFS_BIO_RESERVED_TEMPLATE_2 Reserved for a vendor-defined Template

format.

WFS_BIO_RESERVED_RAW_3 Reserved for a vendor-defined Raw format.

WFS_BIO_RESERVED_TEMPLATE_3 Reserved for a vendor-defined Template

format.

fwEncryptionAlgorithms

Supported encryption algorithms will be reported as a combination of the following flags, or

WFS_BIO_CRYPT_NONE if no encryption algorithms are supported:

Value Meaning

WFS_BIO_CRYPT_TRIDESECB Triple DES with Electronic Code Book.

WFS_BIO_CRYPT_TRIDESCBC Triple DES with Cipher Block Chaining.

WFS_BIO_CRYPT_TRIDESCFB Triple DES with Cipher Feed Back.

WFS_BIO_CRYPT_RSA RSA Encryption.

fwStorage

Indicates whether or not biometric template data can be stored securely as a combination of the

following flags, or WFS_BIO_STORAGE_NONE if Biometric template data is not stored in the

device:

Value Meaning

WFS_BIO_STORAGE_SECURE Biometric template data is securely stored as

encrypted data.

WFS_BIO_STORAGE_CLEAR Biometric template data is stored

unencrypted in the device.

fwPersistenceModes

Specifies which data persistence modes can be set using the

WFS_CMD_BIO_SET_DATA_PERSISTENCE command. This applies specifically to the

biometric data that has been captured using the WFS_CMD_BIO_READ command. A value of

WFS_BIO_PS_NONE indicates that persistence is entirely under device control and cannot be

set, otherwise, valid values are a combination of the following flags:

Value Meaning

WFS_BIO_PS_PERSIST Biometric data captured using the

WFS_CMD_BIO_READ command can

persist until all XFS sessions are closed, the

device is power failed or rebooted, or the

WFS_CMD_BIO_READ command is

requested again. This captured biometric

data can also be explicitly cleared using the

WFS_CMD_BIO_CLEAR or

WFS_CMD_BIO_RESET commands.

CWA 16926-78:2023 (E)

17

WFS_BIO_PS_AUTOCLEAR Captured biometric data will not persist.

Once the data has been either returned in the

WFS_CMD_BIO_READ command or used

by the WFS_CMD_BIO_MATCH

command, then the data is cleared from the

device.

dwMatchSupported

Specifies if matching is supported using the WFS_CMD_BIO_MATCH and/or

WFS_CMD_BIO_SET_MATCH commands. This will be one of the following values:

Value Meaning

WFS_BIO_MTC_NONE The device does not support matching.

WFS_BIO_MTC_STORED_MATCH The device scans biometric data using the

WFS_CMD_BIO_READ command and

stores it, then the scanned data can be

compared with imported biometric data

using the WFS_CMD_BIO_MATCH

command (See section 7.2 - Biometric

Match Command Flow – Separate Scan and

Match).

WFS_BIO_MTC_COMBINED_MATCH The device scans biometric data and

performs a match against imported biometric

data as a single operation. The

WFS_CMD_BIO_SET_MATCH command

must be called before the

WFS_CMD_BIO_READ command in order

to set the matching criteria. Then the

WFS_CMD_BIO_MATCH command can

be called to return the result (See section 7.3

- Biometric Match Command Flow –

Combined Scan and Match).

fwScanModes

Specifies the modes that the WFS_CMD_BIO_READ command can be used for, as a

combination of the following flags:

Value Meaning

WFS_BIO_MODE_SCAN The WFS_CMD_BIO_READ command can

be used to scan data only, for example to

enroll a user or collect data for matching in

an external biometric system.

WFS_BIO_MODE_MATCH The WFS_CMD_BIO_READ command can

be used to scan data for a match operation

using the WFS_CMD_BIO_MATCH

command.

fwCompareModes

Specifies the type of match operations that can be performed as a combination of the following

flags. A value of WFS_BIO_COMP_NONE indicates that matching is not supported:

Value Meaning

WFS_BIO_COMP_VERIFY The biometric data can be compared as a

one to one verification operation.

WFS_BIO_COMP_IDENTIFY The biometric data can be compared as a

one to many identification operation.

fwClearData

Specifies the type of data that can be cleared from storage using the WFS_CMD_BIO_CLEAR or

WFS_CMD_BIO_RESET commands as either WFS_BIO_CLR_NONE or a combination of the

following flags:

CWA 16926-78:2023 (E)

18

Value Meaning

WFS_BIO_CLR_SCANNEDDATA Raw image data that has been scanned using

the WFS_CMD_BIO_READ command can

be cleared.

WFS_BIO_CLR_IMPORTEDDATA Template data that was imported using the

WFS_CMD_BIO_IMPORT command can

be cleared.

WFS_BIO_CLR_SETMATCHDATA Match criteria data that was set using the

WFS_CMD_SET_MATCH command can

be cleared.

lpszExtra

Pointer to a list of vendor-specific, or any other extended, information. The information is

returned as a series of “key=value” strings so that it is easily extensible by Service Providers.

Each string is null-terminated, with the final string terminating with two null characters. An

empty list may be indicated by either a NULL pointer or a pointer to two consecutive null

characters.

dwGuidLights [...]

Specifies which guidance lights are available. A number of guidance light positions are defined

below. Vendor specific guidance lights are defined starting from the end of the array. The

maximum guidance light index is WFS_BIO_GUIDLIGHTS_MAX.

In addition to supporting specific flash rates and colors, some guidance lights also have the

capability to show directional movement representing “exit”.

The elements of this array are specified as a combination of the following flags and indicate all of

the possible flash rates (type B) colors (type C) and directions (type D) that the guidance light

indicator is capable of handling. If the guidance light indicator only supports one color, then no

value of type C is returned. If the guidance light indicator does not support direction, then no

value of type D is returned. A value of WFS_BIO_GUIDANCE_NOT_AVAILABLE indicates

that the device has no guidance light indicator or the device controls the light directly with no

application control possible.

Value Meaning Type

WFS_BIO_GUIDANCE_NOT_AVAILABLE There is no guidance light control A

available at this position.

WFS_BIO_GUIDANCE_OFF The light can be off. B

WFS_BIO_GUIDANCE_SLOW_FLASH The light can blink slowly. B

WFS_BIO_GUIDANCE_MEDIUM_FLASH The light can blink medium B

frequency.

WFS_BIO_GUIDANCE_QUICK_FLASH The light can blink quickly. B

WFS_BIO_GUIDANCE_CONTINUOUS The light can be B

continuous (steady).

WFS_BIO_GUIDANCE_RED The light can be red. C

WFS_BIO_GUIDANCE_GREEN The light can be green. C

WFS_BIO_GUIDANCE_YELLOW The light can be yellow. C

WFS_BIO_GUIDANCE_BLUE The light can be blue. C

WFS_BIO_GUIDANCE_CYAN The light can be cyan. C

WFS_BIO_GUIDANCE_MAGENTA The light can be magenta. C

WFS_BIO_GUIDANCE_WHITE The light can be white. C

WFS_BIO_GUIDANCE_ENTRY The light can be in the entry state. D

WFS_BIO_GUIDANCE_EXIT The light can be in the exit state. D

dwGuidLights [WFS_BIO_GUIDANCE_BIO]

Specifies whether the guidance light indicator on the biometric device is available.

bPowerSaveControl

Specifies whether power saving control is available. This can either be TRUE if available or

FALSE if not available.

bAntiFraudModule

Specifies whether the anti-fraud module is available. This can either be TRUE if available or

FALSE if not available.

CWA 16926-78:2023 (E)

19

lpdwSynchronizableCommands

Pointer to a zero-terminated list of DWORDs which contains the execute command IDs that can

be synchronized. If no execute command can be synchronized, then this parameter will be NULL.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments Applications which rely on the lpszExtra field may not be device or vendor-independent.

CWA 16926-78:2023 (E)

20

4.3 WFS_INF_BIO_STORAGE_INFO

Description This command is used to obtain information regarding the number and format of biometric

templates that have been imported using the WFS_CMD_BIO_IMPORT command.

Input Param None.

Output Param LPWFSBIOSTORAGELIST lpStorageList;

typedef struct _wfs_bio_storage_list

 {

 USHORT usCount;

 LPWFSBIOSTORAGE *lppStorageList;

 } WFSBIOSTORAGELIST, *LPWFSBIOSTORAGELIST;

usCount

Specifies the number of WFSBIOSTORAGE structures returned in lppStorageList.

lppStorageList

Pointer to an array of pointers to WFSBIOSTORAGE structures:

typedef struct _wfs_bio_storage

 {

 USHORT usIdentifier;

 LPWFSBIODATATYPE lpType;

 } WFSBIOSTORAGE, *LPWFSBIOSTORAGE;

usIdentifier

A unique number which identifies the template.

lpType

Pointer to a WFSBIODATATYPE structure that specifies the biometric data type of the

template data.

typedef struct _wfs_bio_data_type

 {

 DWORD dwFormat;

 DWORD dwAlgorithm;

 LPSTR lpszKeyName;

 } WFSBIODATATYPE, *LPWFSBIODATATYPE;

dwFormat

Specifies the format of the template data. For possible values see the description of the

fwDataFormats capability field.

dwAlgorithm

Specifies the encryption algorithm. For possible values see the description of the

fwEncryptionAlgorithms capability field. This value is WFS_BIO_CRYPTNONE if

lpszKeyName is NULL.

lpszKeyName

Specifies the name of the key that is used to encrypt the biometric data. This value is

NULL if the biometric data is not encrypted.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be

generated by this command:

Value Meaning

WFS_ERR_BIO_NOIMPORTEDDATA No data to return. Typically means that no

data has been imported using the

WFS_CMD_BIO_IMPORT command.

Comments None.

CWA 16926-78:2023 (E)

21

4.4 WFS_INF_BIO_KEY_INFO

Description This command returns detailed information about the keys in the biometric module, including

symmetric and asymmetric keys, that can be used for biometric data encryption and decryption.

This command will also return information on all keys loaded during manufacture that can be

used by applications for biometric data encryption and decryption.

Input Param LPSTR lpszKeyName;

lpszKeyName

Specifies a string which identifies the name of the key for which detailed information is

requested. This string value is terminated with a null character. If lpszKeyName is set to NULL,

detailed information about all the keys in the biometric module that can be used for biometric data

encryption or decryption are returned.

Output Param LPWFSBIOKEYINFO *lppKeyInfo;

Pointer to a null-terminated array of pointers to WFSBIOKEYINFO structures.

typedef struct _wfs_bio_key_info

 {

 LPSTR lpszKeyName;

 DWORD dwUse;

 BOOL bLoaded;

 } WFSBIOKEYINFO, *LPWFSBIOKEYINFO;

lpszKeyName

Specifies the name of the key.

dwUse

Specifies the type of access for which the key is used as a combination of the following flags:

Value Meaning

WFS_BIO_USECRYPT Key can be used for symmetric

encryption/decryption.

WFS_BIO_USERSAPUBLIC Key is used as a public key for RSA

asymmetric encryption.

bLoaded

Specifies whether the key has been loaded.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be

generated by this command:

Value Meaning

WFS_ERR_BIO_KEYNOTFOUND The specified key name is not found.

Comments When the biometric module contains a public/private key-pair, only the public part of the key will

be reported. In order to obtain the public key data, it is recommended to use the XFS PIN device

class WFS_CMD_PIN_GET_CERTIFICATE or

WFS_CMD_PIN_EXPORT_RSA_ISSUER_SIGNED_ITEM command.

 For biometric modules that can support application key loading, it is recommended to use the

XFS PIN device class for key management functionality.

CWA 16926-78:2023 (E)

22

5. Execute Commands

5.1 WFS_CMD_BIO_READ

Description This command enables the device for biometric scanning, then captures and optionally returns

biometric data. A WFS_EXEE_BIO_PRESENTSUBJECT event will be sent to notify the

application when it is ready to begin scanning and a WFS_EXEE_BIO_SUBJECTDETECTED

event sent for each scanning attempt. The usNumCaptures input parameter specifies how many

captures should be attempted, unless it is zero in which case the device itself will determine this.

Once this command has successfully captured biometric raw data it will complete with

WFS_SUCCESS.

The WFS_CMD_BIO_READ command has two purposes:

Scanning: The biometric data that is captured into the device can be processed into biometric

template data and returned as an output parameter for enrollment or storage elsewhere, e.g. on a

server or smart card.

Matching: The biometric data that is captured into the device can be used for subsequent

matching. Once data has been scanned into the device it can be compared to existing biometric

templates that have been imported using the WFS_CMD_BIO_IMPORT command in order to

allow verification or identification of an individual. The dwMatchSupported capability indicates if

the WFS_CMD_BIO_MATCH command can be used for matching, otherwise the matching must

be done externally, e.g. on a server or smart card.

In either case the data that has been scanned into the device will be persistent according to the

current persistence mode as reported by the dwDataPersistence status field.

Examples of the above use cases are detailed in the appendix in section 7. Biometric Device

Command Flows – Application Guidelines.

Input Param LPWFSBIOREAD lpRead;

typedef struct _wfs_bio_read

 {

 USHORT usCount;

 LPWFSBIODATATYPE *lppTypes;

 USHORT usNumCaptures;

 USHORT usMode;

 } WFSBIOREAD, *LPWFSBIOREAD;

usCount

Specifies the number of LPWFSBIODATATYPE structures returned in lppTypes.

lppTypes

Pointer to an array of pointers to WFSBIODATATYPE structures, each element of which

represents the data type(s) in which the data should be returned in the lpReadData output

parameter. If no data is to be returned lppTypes should be set to NULL. Single or multiple formats

can be returned, or no data can be returned in the case where the scan is to be followed by a

subsequent matching operation. For a description of the WFSBIODATATYPE type refer to the

description in the WFS_INF_BIO_STORAGE_INFO command.

usNumCaptures

This field indicates the number of times to attempt capture of the biometric data from the subject.

If this is zero, then the device determines how many attempts will be made. The maximum

number of captures possible is indicated by the usMaxCapture capability.

usMode

This optional field indicates the reason why the WFS_CMD_BIO_READ command has been

issued, in order to allow for any necessary optimization. Possible values are detailed in the

fwScanModes capability.

CWA 16926-78:2023 (E)

23

Output Param LPWFSBIOREADDATA lpReadData;

If the LPWFSBIOREAD.lppTypes input parameter is NULL then no data will be returned and the

lpReadData output parameter will be NULL. Otherwise the lpReadData output parameter will be

as follows:

typedef struct _wfs_bio_read_data

 {

 USHORT usCount;

 LPWFSBIODATA *lppBioDataList;

 } WFSBIOREADDATA, *LPWFSBIOREADDATA;

usCount

Specifies the number of LPWFSBIODATA structures returned in lppBioDataList.

lppBioDataList

Pointer to an array of pointers to WFSBIODATA structures. The data type LPWFSBIODATA is

used to contain the returned data and its format. It is defined as follows:

typedef struct _wfs_bio_data

 {

 LPWFSBIODATATYPE lpType;

 LPWFSXBIODATA lpxData;

 } WFSBIODATA, *LPWFSBIODATA;

lpType

This field is used to indicate the biometric data type of the template data contained in lpxData.

For a description of the WFSBIODATATYPE type refer to the description in the

WFS_INF_BIO_STORAGE_INFO command.

lpxData

Pointer to a WFSXBIODATA data type containing the binary data stream.

typedef struct _wfs_bio_hex_data

 {

 USHORT usLength;

 LPBYTE lpbData;

 } WFSXBIODATA, *LPWFSXBIODATA;

usLength

Length of the byte stream pointed to by lpbData.

lpbData

Pointer to the binary data stream.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be

generated by this command:

Value Meaning

WFS_ERR_BIO_READFAILED Module was unable to complete the scan

operation.

WFS_ERR_BIO_MODENOTSUPP The input parameter usMode contains a

value that is not supported.

WFS_ERR_BIO_FORMATNOTSUPP The format specified is valid but not

supported. A list of the supported values can

be obtained through the fwDataFormats

capability field.

WFS_ERR_BIO_KEYNOTFOUND The specified key name is not found.

CWA 16926-78:2023 (E)

24

Events In addition to the generic events defined in [Ref. 1], the following events can be generated as a

result of this command:

Value Meaning

WFS_EXEE_BIO_PRESENTSUBJECT This event notifies the application when the

device is ready for the user to present the

subject to be captured to the biometric

scanner, and can be sent as many times as

specified by usNumCaptures or as many

times as the device supports.

WFS_EXEE_BIO_SUBJECTDETECTED The device has detected a subject and an

attempt to capture biometric data has been

performed.

WFS_EXEE_BIO_REMOVESUBJECT This event notifies an application when the

subject should be removed from the device

for the next scan attempt.

WFS_SRVE_BIO_SUBJECTREMOVED The device has detected that the subject has

been removed from the biometric sensor.

WFS_SRVE_BIO_DATACLEARED This event notifies an application that the

data which has been captured and returned

has been automatically cleared from the

device (status wDataPersistence ==

WFS_BIO_PS_AUTOCLEAR).

WFS_EXEE_BIO_ORIENTATION This event notifies an application that the

user has presented the subject to the

biometric sensor in an incorrect orientation.

The application should prompt the user to

correct it.

Comments None.

CWA 16926-78:2023 (E)

25

5.2 WFS_CMD_BIO_IMPORT

Description This command imports a list of biometric template data structures into the device for later

comparison with biometric data scanned using the WFS_CMD_BIO_READ command. Normally

this data is read from the chip on a customer’s card or provided by the host system. Data that has

been imported is available until a WFS_CMD_BIO_CLEAR command is called. If template data

has been previously imported using a call to WFS_CMD_BIO_IMPORT, then it is overwritten.

This data is not persistent across power fails.

Input Param LPWFSBIOIMPORTDATA lpImportData;

typedef struct _wfs_bio_import_data

 {

 USHORT usCount;

 LPWFSBIODATA *lppBioDataList;

 } WFSBIOIMPORTDATA, *LPWFSBIOIMPORTDATA;

usCount

Specifies the number of LPWFSBIODATA structures in lppBioDataList. Note that if a simple

one-to-one verification comparison is to be performed using the WFS_CMD_BIO_MATCH

command then usCount should be 1 and lppBioDataList will point to an array of only one

WFSBIODATA structure.

lppBioDataList

Pointer to an array of pointers to the WFSBIODATA structures to be imported. For a description

of the WFSBIODATA type refer to the description in the WFS_CMD_BIO_READ command.

Output Param LPWFSBIOSTORAGELIST lpStorageList;

A list of the biometric template data structures that were successfully imported. For the structure

definition of the WFSBIOSTORAGELIST see the WFS_INF_BIO_STORAGE_INFO command.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be

generated by this command:

Value Meaning

WFS_ERR_BIO_INVALIDDATA The data that was imported was malformed

or invalid. No data has been imported into

the device. The presence of any previously

loaded templates can be checked for using

the WFS_INF_BIO_STORAGE_INFO

command.

WFS_ERR_BIO_FORMATNOTSUPP The format of the biometric data that was

specified is not supported. No data has been

imported into the device. A list of the

supported values can be obtained through the

fwDataFormats capability field.

WFS_ERR_BIO_CAPACITYEXCEEDED An attempt has been made to import more

templates than the maximum reserved

storage space available. The maximum

storage space available is reported in the

capability dwTemplateStorage. No data has

been imported into the device. The amount

of storage remaining is reported in the

WFSBIOSTATUS.dwRemainingStorage

status field.

WFS_ERR_BIO_KEYNOTFOUND The specified key name is not found.

Events None.

Comments None.

CWA 16926-78:2023 (E)

26

5.3 WFS_CMD_BIO_MATCH

Description This command returns the result of a comparison between data that has been scanned using the

WFS_CMD_BIO_READ command and template data that has been imported using the

WFS_CMD_BIO_IMPORT command. The comparison may be performed by this command or

the WFS_CMD_BIO_READ, this command is responsible for returning the result.

WFS_SUCCESS is returned if the device has been able to successfully compare the data, however

this does not necessarily mean that the data matched.

If the capability dwMatchSupported value == WFS_BIO_MTC_COMBINED_MATCH then the

device performs a combined scan and match operation, and the WFS_CMD_BIO_SET_MATCH

must be called before this command in order to set the matching criteria. In this case if

WFS_CMD_BIO_SET_MATCH has not been called then this command will fail with

WFS_ERR_SEQUENCE_ERROR.

If the capability dwMatchSupported == WFS_BIO_STORED_MATCH then the device will scan

data using the WFS_CMD_BIO_READ command and store it, then the data can be compared

with imported biometric data using the WFS_CMD_BIO_MATCH command.

This command can be used in two modes of operation: Verification or Identification, as indicated

by the usCompareMode input parameter. The two modes of operation are described below:

Verification (usCompareMode == WFS_BIO_VERIFY) :

In this case a one to one comparison is performed and the usMaximum input parameter is ignored.

The data that has been scanned previously using the WFS_CMD_BIO_READ command is

compared with a single template that has been imported using the WFS_CMD_BIO_IMPORT

command. If there is a successful match then the usConfidenceLevel output parameter can be used

to determine the quality of the match and will be in the range 0 – 100, where 100 represents an

exact match and 0 represents no match.

Identification (usCompareMode == WFS_BIO_IDENTIFY) :

In this case a one to many comparison is performed. The data that has been scanned previously

using the WFS_CMD_BIO_READ command is compared with multiple templates that have been

imported using the WFS_CMD_BIO_IMPORT command. The input parameter usMaximum is

used to specify the maximum number of matches to return: a smaller number can make execution

faster. The required degree of matching similarity can be controlled using the usThreshold

parameter which is used to control the frequency of false positive and false negative matching

errors. The value of usThreshold represents the criteria as to what constitutes a successful match

and is in the range 0 – 100, where 100 represents an exact match and 0 represents no match. If for

example, usThreshold is set to 75 then only results with a matching score equal to or greater than

75 are returned. The matching candidate list is returned in the lpMatchResult output parameter

sorted in order of highest score. The higher the value of usConfidenceLevel the closer the

candidate is to the beginning of the list, with the best match being the first candidate in the list.

Note that where the number of templates that match the criteria of the threshold are greater than

usMaximum, only the usMaximum templates with the highest score will be returned.

Input Param LPWFSBIOMATCH lpMatch;

typedef struct _wfs_bio_match

 {

 USHORT usCompareMode;

 USHORT usIdentifier;

 USHORT usMaximum;

 USHORT usThreshold;

 } WFSBIOMATCH, *LPWFSWFSBIOMATCH;

usCompareMode

Specifies the type of match operation that is being done. Valid values are:

Value Meaning

WFS_BIO_COMP_VERIFY The biometric data will be compared as a

one to one verification operation.

WFS_BIO_COMP_IDENTIFY The biometric data will be compared as a

one to many identification operation.

CWA 16926-78:2023 (E)

27

usIdentifier

In the case where usCompareMode is WFS_BIO_COMP_VERIFY this parameter corresponds to

a template that has been imported by a previous call to the WFS_CMD_BIO_IMPORT command.

If usCompareMode is WFS_BIO_COMP_IDENTIFY a comparison is performed against all of

the imported templates, in which case this parameter is ignored.

usMaximum

Specifies the maximum number of matches to return. In the case where usCompareMode is

WFS_BIO_COMP_VERIFY this parameter is ignored.

usThreshold

Specifies the minimum matching confidence level necessary for the candidate to be included in

the results. This value should be in the range of 0 to 100, where 100 represents an exact match and

0 represents no match.

Output Param LPWFSBIOMATCHRESULT lpMatchResult;

typedef struct _wfs_bio_match_result

 {

 USHORT usCount;

 LPWFSBIOCANDIDATE *lppTemplateList;

 } WFSBIOMATCHRESULT, *LPWFSBIOMATCHRESULT;

usCount

Specifies the number of LPWFSBIOCANDIDATE structures returned in lppTemplateList. This

will always be 1 where a verification is being performed and a successful match has been made.

lppTemplateList

Pointer to an array of pointers to LPWFSBIOCANDIDATE structures. This will be an empty list

and usCount will be zero if the WFS_CMD_BIO_MATCH operation completes with no match

found. If there are matches found, lppTemplateList contains all of the matching templates in order

of confidence level, with the highest score first. Note that where the number of templates that

match the input criteria of the threshold are greater than usMaximum, only the usMaximum

templates with the highest scores will be returned.

typedef struct _wfs_bio_candidate

 {

 USHORT usConfidenceLevel;

 USHORT usIdentifier;

 LPWFSBIODATA lpData;

 } WFSBIOCANDIDATE, * LPWFSBIOCANDIDATE;

usConfidenceLevel

Specifies the level of confidence for the match found. This value is in a scale of 0 - 100, where

0 is no match and 100 is an exact match. The minimum value will be that which was set by the

usThreshold input parameter.

usIdentifier

A unique number that positively identifies the biometric template data. This corresponds to the

list of template identifiers returned by the WFS_INF_BIO_STORAGE_INFO command.

lpData

Contains the biometric template data that was matched. This data may be used as justification

for the biometric data match or confidence level. This pointer is NULL if no additional

comparison data is returned. For a description of the WFSBIODATA type refer to the

description in the WFS_CMD_BIO_READ command.

CWA 16926-78:2023 (E)

28

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be

generated by this command:

Value Meaning

WFS_ERR_BIO_NOIMPORTEDDATA The command failed because no data was

imported previously using the

WFS_CMD_BIO_IMPORT_DATA

command.

WFS_ERR_BIO_INVALIDIDENTIFIER The command failed because data was

imported but usIdentifier was not found.

WFS_ERR_BIO_MODENOTSUPP The type of match specified in

usCompareMode is not supported.

WFS_ERR_BIO_NOCAPTUREDDATA No captured data is present. Typically means

that the WFS_CMD_BIO_READ command

has not been called, or the captured data has

been cleared using the

WFS_CMD_BIO_CLEAR command.

WFS_ERR_BIO_INVALIDCOMPAREMODE The compare mode specified by the

usCompareMode input parameter is not

supported.

WFS_ERR_BIO_INVALIDTHRESHOLD The usThreshold input parameter is greater

than the maximum allowed of 100.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated as a

result of this command:

Value Meaning

WFS_SRVE_BIO_DATACLEARED This event notifies an application that the

data which has been captured and returned

has been automatically cleared from the

device (status dwDataPersistence ==

WFS_BIO_PS_AUTOCLEAR).

Comments None.

CWA 16926-78:2023 (E)

29

5.4 WFS_CMD_BIO_SET_MATCH

Description This command is used for devices which need to know the match criteria data for the

WFS_CMD_BIO_MATCH command before any biometric scanning is performed by the

WFS_CMD_BIO_READ command. WFS_CMD_BIO_READ and WFS_CMD_BIO_MATCH

should be called after this command. For all other devices WFS_ERR_UNSUPP_COMMAND

will be returned here.

If the capability dwMatchSupported == WFS_BIO_MTC_COMBINED_MATCH then this

command is mandatory. If it is not called first, the WFS_CMD_BIO_MATCH command will fail

with the generic error WFS_ERR_SEQUENCE_ERROR. The data set using this command is not

persistent across power failures.

Input Param LPWFSBIOMATCH lpMatch;

See WFS_CMD_BIO_MATCH for details.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be

generated by this command:

Value Meaning

WFS_ERR_BIO_INVALIDIDENTIFIER The command failed because data was

imported but usIdentifier was not found.

WFS_ERR_BIO_MODENOTSUPP The type of match specified in

usCompareMode is not supported.

WFS_ERR_BIO_NOIMPORTEDDATA The command failed because no data was

imported previously using the

WFS_CMD_BIO_IMPORT_DATA

command.

WFS_ERR_BIO_INVALIDTHRESHOLD The usThreshold input parameter is greater

than the maximum allowed of 100.

Events None.

Comments None.

CWA 16926-78:2023 (E)

30

5.5 WFS_CMD_BIO_CLEAR

Description This command can be used to clear stored data. In the case where there is no stored data to clear

this command completes with WFS_SUCCESS.

Input Param LPWFSBIOCLEAR lpClear;

typedef struct _wfs_bio_clear

 {

 DWORD fwClearData;

 } WFSBIOCLEAR, *LPWFSBIOCLEAR;

fwClearData

This parameter indicates the type of data to be cleared from storage as a combination of flags. If

this is set to zero then all stored data will be cleared. For a list of possible values see the

fwClearData capability.

Output Param None.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated as a

result of this command:

Value Meaning

WFS_SRVE_BIO_DATACLEARED This event notifies an application that data

has been cleared from the device.

Comments None.

CWA 16926-78:2023 (E)

31

5.6 WFS_CMD_BIO_RESET

Description This command is used by the application to perform a hardware reset which will attempt to return

the biometric device to a known good state.

Input Param LPWFSBIORESET lpResetIn;

typedef struct _wfs_bio_reset

 {

 DWORD fwClearData;

 } WFSBIORESET, *LPWFSBIORESET;

fwClearData

This parameter indicates the type of data to be cleared from storage as a combination of flags. If

this is set to zero then all stored data will be cleared. For a list of possible values see the

fwClearData capability.

Output Param None.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated as a

result of this command:

Value Meaning

WFS_SRVE_BIO_DATACLEARED This event notifies an application that data

has been cleared from the device.

Comments This command is used by an application control program to cause a device to reset itself to a

known good condition.

CWA 16926-78:2023 (E)

32

5.7 WFS_CMD_BIO_SET_DATA_PERSISTENCE

Description This command is used to set the persistence mode. This controls how the biometric data is

persisted after a WFS_CMD_BIO_READ command. The data can be persisted for use by

subsequent commands, or it can be automatically cleared.

Input Param LPWFSBIOPERSISTDATA lpPersistDataIn;

typedef struct _wfs_bio_persist_data

 {

 DWORD dwPersistenceMode;

 } WFSBIOPERSISTDATA, *LPWFSBIOPERSISTDATA;

dwPersistenceMode

Specifies the data persistence mode. This controls how biometric data that has been captured

using the WFS_CMD_BIO_READ command will persist. Available modes are reported in the

fwPersistenceModes capability field. This value itself is persistent.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be

generated by this command:

Value Meaning

WFS_ERR_BIO_MODENOTSUPP The command failed because a mode was

specified which is not supported.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments When using this command to maintain data persistence, applications should ensure that a

customer’s biometric data is cleared after they have completed all their transactions. The data can

be explicitly cleared using the WFS_CMD_BIO_CLEAR command.

CWA 16926-78:2023 (E)

33

5.8 WFS_CMD_BIO_SET_GUIDANCE_LIGHT

Description This command is used to set the status of the BIO guidance lights. This includes defining the flash

rate, the color and the direction. When an application tries to use a color or direction that is not

supported then the Service Provider will return the generic error WFS_ERR_UNSUPP_DATA.

Input Param LPWFSBIOSETGUIDLIGHT lpSetGuidLight;

typedef struct _wfs_bio_set_guidlight

 {

 WORD wGuidLight;

 DWORD dwCommand;

 } WFSBIOSETGUIDLIGHT, *LPWFSBIOSETGUIDLIGHT;

wGuidLight

Specifies the index of the guidance light to set as one of the values defined within the capabilities

section.

dwCommand

Specifies the state of the guidance light indicator as WFS_BIO_GUIDANCE_OFF or a

combination of the following flags consisting of one type B, optionally one type C and optionally

one type D. If no value of type C is specified, then the default color is used. The Service Provider

determines which color is used as the default color.

Value Meaning Type

WFS_BIO_GUIDANCE_OFF The light indicator is turned off. A

WFS_BIO_GUIDANCE_SLOW_FLASH The light indicator is set to flash B

slowly.

WFS_BIO_GUIDANCE_MEDIUM_FLASH The light indicator is set to flash B

medium frequency.

WFS_BIO_GUIDANCE_QUICK_FLASH The light indicator is set to flash B

quickly.

WFS_BIO_GUIDANCE_CONTINUOUS The light indicator is turned on B

continuously (steady).

WFS_BIO_GUIDANCE_RED The light indicator color is set C

to red.

WFS_BIO_GUIDANCE_GREEN The light indicator color is set C

to green.

WFS_BIO_GUIDANCE_YELLOW The light indicator color is set C

to yellow.

WFS_BIO_GUIDANCE_BLUE The light indicator color is set C

to blue.

WFS_BIO_GUIDANCE_CYAN The light indicator color is set C

to cyan.

WFS_BIO_GUIDANCE_MAGENTA The light indicator color is set C

to magenta.

WFS_BIO_GUIDANCE_WHITE The light indicator color is set C

to white.

WFS_BIO_GUIDANCE_ENTRY The light indicator is set D

to the entry state.

WFS_BIO_GUIDANCE_EXIT The light indicator is set D

to the exit state.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be

generated by this command:

Value Meaning

WFS_ERR_BIO_INVALID_PORT An attempt to set a guidance light to a new

value was invalid because the guidance light

does not exist.

Events Only the generic events defined in [Ref. 1] can be generated by this command:

Comments The slow and medium flash rates must not be greater than 2.0 Hz. It should be noted that in order

CWA 16926-78:2023 (E)

34

to comply with American Disabilities Act guidelines only a slow or medium flash rate must be

used.

CWA 16926-78:2023 (E)

35

5.9 WFS_CMD_BIO_POWER_SAVE_CONTROL

Description This command activates or deactivates the power saving mode.

If the Service Provider receives another execute command while in power saving mode, the

Service Provider automatically exits the power saving mode, and executes the requested

command. If the Service Provider receives an information command while in power saving mode,

the Service Provider will not exit the power saving mode.

Input Param LPWFSBIOPOWERSAVECONTROL lpPowerSaveControl;

typedef struct _wfs_bio_power_save_control

 {

 USHORT usMaxPowerSaveRecoveryTime;

 } WFSBIOPOWERSAVECONTROL, *LPWFSBIOPOWERSAVECONTROL;

usMaxPowerSaveRecoveryTime

Specifies the maximum number of seconds in which the device must be able to return to its

normal operating state when exiting power save mode. The device will be set to the highest

possible power save mode within this constraint. If usMaxPowerSaveRecoveryTime is set to zero,

then the device will exit the power saving mode.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be

generated by this command:

Value Meaning

WFS_ERR_BIO_POWERSAVETOOSHORT The power saving mode has not been

activated because the device is not able to

resume from the power saving mode within

the specified

usMaxPowerSaveRecoveryTime value.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this

command:

Value Meaning

WFS_SRVE_BIO_POWER_SAVE_CHANGE The power save recovery time has changed.

Comments None.

CWA 16926-78:2023 (E)

36

5.10 WFS_CMD_BIO_SYNCHRONIZE_COMMAND

Description This command is used to reduce response time of a command (e.g. for synchronization with

display) as well as to synchronize actions of the different device classes. This command is

intended to be used only on hardware which is capable of synchronizing functionality within a

single device class or with other device classes.

The list of execute commands which this command supports for synchronization is retrieved in

the lpdwSynchronizableCommands parameter of the WFS_INF_BIO_CAPABILITIES.

This command is optional, i.e. any other command can be called without having to call it in

advance. Any preparation that occurs by calling this command will not affect any other

subsequent command. However, any subsequent execute command other than the one that was

specified in the dwCommand input parameter will execute normally and may invalidate the

pending synchronization. In this case the application should call the

WFS_CMD_BIO_SYNCHRONIZE_COMMAND again in order to start a synchronization.

Input Param LPWFSBIOSYNCHRONIZECOMMAND lpSynchronizeCommand;

typedef struct _wfs_bio_synchronize_command

 {

 DWORD dwCommand;

 LPVOID lpCmdData;

 } WFSBIOSYNCHRONIZECOMMAND, *LPWFSBIOSYNCHRONIZECOMMAND;

dwCommand

The command ID of the command to be synchronized and executed next.

lpCmdData

Pointer to data or a data structure that represents the parameter that is normally associated with

the command that is specified in dwCommand. For example, if dwCommand is

WFS_CMD_BIO_READ then lpCmdData will point to a WFSBIOREAD structure. This

parameter can be NULL if no command input parameter is needed or if this detail is not needed to

synchronize for the command.

It will be device-dependent whether the synchronization is effective or not in the case where the

application synchronizes for a command with this command specifying a parameter but

subsequently executes the synchronized command with a different parameter. This case should

not result in an error; however, the preparation effect could be different from what the application

expects. The application should, therefore, make sure to use the same parameter between

lpCmdData of this command and the subsequent corresponding execute command.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be

generated by this command:

Value Meaning

WFS_ERR_BIO_COMMANDUNSUPP The command specified in the dwCommand

field is not supported by the Service

Provider.

WFS_ERR_BIO_SYNCHRONIZEUNSUPP The preparation for the command specified

in the dwCommand with the parameter

specified in the lpCmdData is not supported

by the Service Provider.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments For sample flows of this synchronization see the [Ref 1] Appendix C.

CWA 16926-78:2023 (E)

37

6. Events

6.1 WFS_EXEE_BIO_PRESENTSUBJECT

Description This execute event is generated to notify the application when the device is ready for a user to

present the subject to be captured to the biometric scanner, for example, placing a finger on a

fingerprint reader.

Event Param None.

Comments None.

CWA 16926-78:2023 (E)

38

6.2 WFS_EXEE_BIO_SUBJECTDETECTED

Description This execute event is generated to notify the application when the device has detected a subject in

the capture area and an attempt to capture biometric data has been performed.

Event Param None.

Comments None.

CWA 16926-78:2023 (E)

39

6.3 WFS_EXEE_BIO_REMOVESUBJECT

Description This execute event is used to notify an application that the subject should be removed from the

capture area of the device.

Event Param None.

Comments None.

CWA 16926-78:2023 (E)

40

6.4 WFS_SRVE_BIO_SUBJECTREMOVED

Description This service event is generated when the subject has been removed from the capture area of the

device. This event may be generated at any time.

Event Param None.

Comments None.

CWA 16926-78:2023 (E)

41

6.5 WFS_SRVE_BIO_DATACLEARED

Description This mandatory event notifies the application when data has been cleared. This can be the case

when the data is cleared automatically after a WFS_CMD_BIO_READ or

WFS_CMD_BIO_MATCH command completion, or as a result of an explicit call to the

WFS_CMD_BIO_CLEAR or WFS_CMD_BIO_RESET commands.

Input Param LPWFSBIODATACLEARED lpDataCleared;

typedef struct _wfs_bio_data_cleared

 {

 DWORD fwClearData;

 } WFSBIODATACLEARED, *LPWFSBIODATACLEARED;

fwClearData

This parameter indicates the data that was cleared from storage as a combination of the following

values:

Value Meaning

WFS_BIO_CLR_SCANNEDDATA Raw image data that was scanned using the

WFS_CMD_BIO_READ command has

been cleared.

WFS_BIO_CLR_IMPORTEDDATA Template data that was imported using the

WFS_CMD_BIO_IMPORT command has

been cleared.

WFS_BIO_CLR_SETMATCHDATA Match criteria data that was set using the

WFS_CMD_SET_MATCH command has

been cleared.

Comments None.

CWA 16926-78:2023 (E)

42

6.6 WFS_EXEE_BIO_ORIENTATION

Description This event is generated when the biometric subject has an incorrect orientation relative to the

device scanner in order to allow an application to prompt a user to correct it.

Event Param None.

Comments None.

CWA 16926-78:2023 (E)

43

6.7 WFS_SRVE_BIO_DEVICEPOSITION

Description This service event reports that the device has changed its position status.

Event Param LPWFSBIODEVICEPOSITION lpDevicePosition;

typedef struct _wfs_bio_device_position

 {

 WORD wPosition;

 } WFSBIODEVICEPOSITION, *LPWFSBIODEVICEPOSITION;

wPosition

Position of the device as one of the following values:

Value Meaning

WFS_BIO_DEVICEINPOSITION The device is in its normal operating

position.

WFS_BIO_DEVICENOTINPOSITION The device has been removed from its

normal operating position.

WFS_BIO_DEVICEPOSUNKNOWN The position of the device cannot be

determined.

Comments None.

CWA 16926-78:2023 (E)

44

6.8 WFS_SRVE_BIO_POWER_SAVE_CHANGE

Description This service event specifies that the power save recovery time has changed.

Event Param LPWFSBIOPOWERSAVECHANGE lpPowerSaveChange;

typedef struct _wfs_bio_power_save_change

 {

 USHORT usPowerSaveRecoveryTime;

 } WFSBIOPOWERSAVECHANGE, *LPWFSBIOPOWERSAVECHANGE;

usPowerSaveRecoveryTime

Specifies the actual number of seconds required by the device to resume its normal operational

state. This value is zero if the device exited the power saving mode.

Comments If another device class compounded with this device enters into a power saving mode this device

will automatically enter into the same power saving mode and this event will be generated.

CWA 16926-78:2023 (E)

45

7. Biometric Device Command Flows – Application Guidelines

The following sections describe the flow of the XFS biometric commands. These application flows are provided as

guidelines only.

7.1 Biometric Enrollment Command Flow

The following table describes the flow of enrolling a user using the WFS_CMD_BIO_READ command. Two

attempts at scanning are necessary.

Step Customer Application XFS Commands and Events

1. Begins Enrollment process. WFS_CMD_BIO_READ

usMode = WFS_BIO_MODE_SCAN

…

WFS_EXEE_BIO_PRESENTSUBJECT

2. Ask customer to present subject to

sensor, e.g. finger, eye, palm

3. Customer presents

subject to biometric

sensor.

4. WFS_EXEE_BIO_SUBJECTDETECTED

event, device scans and collects the biometric

data.

5. WFS_EXEE_BIO_REMOVESUBJECT

6. Ask customer to remove subject

from sensor

7. Customer removes

subject from biometrics

sensor

8. WFS_SRVE_BIO_SUBJECTREMOVED

9. WFS_EXEE_BIO_PRESENTSUBJECT (if

another attempt is needed).

10. Ask customer to present subject to

sensor, e.g. finger, eye, palm

11. Customer presents

subject to biometric

sensor.

12. WFS_EXEE_BIO_SUBJECTDETECTED

event, device scans and collects the biometric

data.

13. WFS_EXEE_BIO_REMOVESUBJECT event

14. As no further attempts are needed:

WFS_CMD_BIO_READ completion

15. Ask customer to remove subject

from sensor.

16. WFS_SRVE_BIO_SUBJECTREMOVED

17. Store biometric data to smart card,

database, server/host, etc.

CWA 16926-78:2023 (E)

46

7.2 Biometric Match Command Flow – Separate Scan and Match

The following table describes the flow of successfully identifying a customer whose biometric template data was

previously enrolled and stored on a server/smart card/host system. This template data is first imported using the

WFS_CMD_BIO_IMPORT command, which assigns it a unique identifying number. This usIdentifier number can

then be retrieved using the WFS_INF_BIO_STORAGE_INFO command.

The WFS_CMD_BIO_READ and WFS_CMD_BIO_MATCH commands are then used to scan data and then

compare it with the template identified by usIdentifier. In this use case the device can perform a separate scan and

match operation, therefore the WFS_CMD_BIO_READ command is called to scan the subject’s biometric data

then the WFS_CMD_BIO_MATCH command is called to perform the match and return the result to the

application.

In this case the capability dwMatchSupported is reported as WFS_BIO_MTC_STORED_MATCH.

Step Customer Application XFS Commands and Events

1. Import biometric template data

into the device, e.g. from host,

smart card, etc.

WFS_CMD_BIO_IMPORT

WFS_CMD_BIO_IMPORT completion

2. Begins scan of customer for

matching.

WFS_CMD_BIO_READ

usMode = WFS_BIO_MODE_MATCH

…

WFS_EXEE_BIO_PRESENTSUBJECT

3. Ask customer to present subject to

sensor, e.g. finger, eye, palm

4. Customer presents

subject to biometric

sensor.

5. WFS_EXEE_BIO_SUBJECTDETECTED

event, device scans and stores the customer’s

biometric data.

6. WFS_EXEE_BIO_REMOVESUBJECT event

7. WFS_CMD_BIO_READ completion

8. Request customer to remove

biometric subject from sensor.

9. WFS_SRVE_BIO_SUBJECTREMOVED

10. Application obtains the

usIdentifier for the imported

biometric template data to be

matched.

WFS_INF_BIO_STORAGE_INFO

11. Begin identification process. WFS_CMD_BIO_MATCH is called with input

parameter usIdentifier = 12345. The service

provider compares the scanned data obtained

using the WFS_CMD_BIO_READ command to

the previously imported template data identified

by usIdentifier.

12. WFS_CMD_BIO_MATCH completion.

CWA 16926-78:2023 (E)

47

7.3 Biometric Match Command Flow – Combined Scan and Match

The following table describes the flow of successfully identifying a customer whose biometric template data was

previously enrolled and stored on a server/smart card/host system. This template data is first imported using the

WFS_CMD_BIO_IMPORT command, which assigns it a unique identifying number. This usIdentifier number can

then be retrieved using the WFS_INF_BIO_STORAGE_INFO command.

The WFS_CMD_BIO_READ, WFS_CMD_BIO_SET_MATCH and WFS_CMD_BIO_MATCH commands are

then used to scan data and compare it with the template identified by usIdentifier. In this use case the device

performs a combined scan and match operation, therefore the WFS_CMD_BIO_SET_MATCH command must be

used to set the criteria to be used for matching, including the imported template to be identified by usIdentifier.

When the WFS_CMD_BIO_READ command is then called the device scans the user and performs the comparison

as a combined operation. Finally the WFS_CMD_BIO_MATCH command is called to return the result of the

comparison to the application.

In this case the capability dwMatchSupported is reported as WFS_BIO_MTC_COMBINED_MATCH.

Step Customer Application XFS Commands and Events

1. Import biometric template data

into the device, e.g. from host,

smart card, etc.

WFS_CMD_BIO_IMPORT

WFS_CMD_BIO_IMPORT completion

2. Application obtains the

usIdentifier for an imported

biometric template data to be

matched.

WFS_INF_BIO_STORAGE_INFO

WFS_INF_BIO_STORAGE_INFO completion

usIdentifier = 12345

3. Set the criteria to represent what

constitutes a successful match, and

also the imported template data to

be matched.

WFS_CMD_BIO_SET_MATCH is called with

input parameter usIdentifier = 12345.

4. WFS_CMD_BIO_SET_MATCH completion

5. Begins scan of customer for

matching.

WFS_CMD_BIO_READ

usMode = WFS_BIO_MODE_MATCH

…

WFS_EXEE_BIO_PRESENTSUBJECT

6. Ask customer to present subject to

sensor, e.g. finger, eye, palm

7. Customer presents

subject to biometric

sensor.

8. WFS_EXEE_BIO_SUBJECTDETECTED

event, device scans and collects the customer’s

biometric data, then compares it to the

previously imported template data identified by

usIdentifier.

9. WFS_EXEE_BIO_REMOVESUBJECT event

10. WFS_CMD_BIO_READ completion

11. Request customer to remove

biometric subject from sensor.

12. WFS_SRVE_BIO_SUBJECTREMOVED

13. Get the result of the comparison. WFS_CMD_BIO_MATCH is called to return

the result of the comparison done at stage 8.

14. WFS_CMD_BIO_MATCH completion.

CWA 16926-78:2023 (E)

48

7.4 Biometric Scan-Only Command Flow

The following table describes the flow for a simple biometric scanning device which does not support any matching

at all. User data is scanned using the WFS_CMD_BIO_READ command but matching is performed externally, for

example on a smart card or on a server.

In this case the capability dwMatchSupported is reported as WFS_BIO_MTC_NONE.

Step Customer Application XFS Commands and Events

1. Begin Scanning process. WFS_CMD_BIO_READ

usMode = WFS_BIO_MODE_SCAN

…

WFS_EXEE_BIO_PRESENTSUBJECT

2. Ask customer to present subject to

sensor, e.g. finger, eye, palm

3. Customer presents

subject to biometric

sensor.

4. WFS_EXEE_BIO_SUBJECTDETECTED

event, device scans and collects the biometric

data.

5. WFS_EXEE_BIO_REMOVESUBJECT event

 Request customer to remove

biometric subject from sensor.

6. WFS_CMD_BIO_READ completes and

returns biometric data.

7. Request customer to remove

biometric subject from sensor.

8. WFS_SRVE_BIO_SUBJECTREMOVED

9. Send biometric data to smart card,

database, server/host, etc,., for

matching.

CWA 16926-78:2023 (E)

49

8. C - Header file

/**

* *

* xfsbio.h XFS - Biometrics (BIO) definitions *

* *

* Version 3.40 (December 6 2019) 50 (November 18 2022)

*

* *

**/

#ifndef __INC_XFSBIO__H

#define __INC_XFSBIO__H

#ifdef __cplusplus

extern "C" {

#endif

#include <xfsapi.h>

/* be aware of alignment */

#pragma pack (push, 1)

/* values of WFSBIOCAPS.wClass */

#define WFS_SERVICE_CLASS_BIO (17)

#define WFS_SERVICE_CLASS_NAME_BIO "BIO"

#define WFS_SERVICE_CLASS_VERSION_BIO (0x28030x3203) /* Version 3.4050 */

#define BIO_SERVICE_OFFSET (WFS_SERVICE_CLASS_BIO * 100)

/* BIO Info Commands */

#define WFS_INF_BIO_STATUS (BIO_SERVICE_OFFSET + 1)

#define WFS_INF_BIO_CAPABILITIES (BIO_SERVICE_OFFSET + 2)

#define WFS_INF_BIO_STORAGE_INFO (BIO_SERVICE_OFFSET + 3)

#define WFS_INF_BIO_KEY_INFO (BIO_SERVICE_OFFSET + 4)

/* BIO Execute Commands */

#define WFS_CMD_BIO_READ (BIO_SERVICE_OFFSET + 1)

#define WFS_CMD_BIO_IMPORT (BIO_SERVICE_OFFSET + 2)

#define WFS_CMD_BIO_MATCH (BIO_SERVICE_OFFSET + 3)

#define WFS_CMD_BIO_SET_MATCH (BIO_SERVICE_OFFSET + 4)

#define WFS_CMD_BIO_CLEAR (BIO_SERVICE_OFFSET + 5)

#define WFS_CMD_BIO_RESET (BIO_SERVICE_OFFSET + 6)

#define WFS_CMD_BIO_SET_DATA_PERSISTENCE (BIO_SERVICE_OFFSET + 7)

#define WFS_CMD_BIO_SET_GUIDANCE_LIGHT (BIO_SERVICE_OFFSET + 8)

#define WFS_CMD_BIO_POWER_SAVE_CONTROL (BIO_SERVICE_OFFSET + 9)

#define WFS_CMD_BIO_SYNCHRONIZE_COMMAND (BIO_SERVICE_OFFSET + 10)

/* BIO Events */

#define WFS_EXEE_BIO_PRESENTSUBJECT (BIO_SERVICE_OFFSET + 1)

#define WFS_EXEE_BIO_SUBJECTDETECTED (BIO_SERVICE_OFFSET + 3)

#define WFS_EXEE_BIO_REMOVESUBJECT (BIO_SERVICE_OFFSET + 4)

#define WFS_SRVE_BIO_SUBJECTREMOVED (BIO_SERVICE_OFFSET + 5)

#define WFS_SRVE_BIO_DATACLEARED (BIO_SERVICE_OFFSET + 6)

#define WFS_USRE_BIO_ORIENTATION (BIO_SERVICE_OFFSET + 7)

#define WFS_SRVE_BIO_DEVICEPOSITION (BIO_SERVICE_OFFSET + 8)

#define WFS_SRVE_BIO_POWER_SAVE_CHANGE (BIO_SERVICE_OFFSET + 9)

/* values of WFSBIOSTATUS.fwDevice */

#define WFS_BIO_DEVONLINE WFS_STAT_DEVONLINE

#define WFS_BIO_DEVOFFLINE WFS_STAT_DEVOFFLINE

#define WFS_BIO_DEVPOWEROFF WFS_STAT_DEVPOWEROFF

CWA 16926-78:2023 (E)

50

#define WFS_BIO_DEVNODEVICE WFS_STAT_DEVNODEVICE

#define WFS_BIO_DEVHWERROR WFS_STAT_DEVHWERROR

#define WFS_BIO_DEVUSERERROR WFS_STAT_DEVUSERERROR

#define WFS_BIO_DEVBUSY WFS_STAT_DEVBUSY

#define WFS_BIO_DEVFRAUDATTEMPT WFS_STAT_DEVFRAUDATTEMPT

#define WFS_BIO_DEVPOTENTIALFRAUD WFS_STAT_DEVPOTENTIALFRAUD

/* values of WFSBIOSTATUS.dwSubject */

#define WFS_BIO_SUBJECTPRESENT (1)

#define WFS_BIO_SUBJECTNOTPRESENT (2)

#define WFS_BIO_SUBJECTUNKNOWN (3)

#define WFS_BIO_SUBJECTNOTSUPPORTED (4)

/* Size and max index of dwGuidLights array */

#define WFS_BIO_GUIDLIGHTS_SIZE (32)

#define WFS_BIO_GUIDLIGHTS_MAX (WFS_BIO_GUIDLIGHTS_SIZE - 1)

/* Indices of WFSBIOSTATUS.dwGuidLights [...]

 WFSBIOCAPS.dwGuidLights [...] */

#define WFS_BIO_GUIDANCE_BIO (0)

/* Values of WFSBIOSTATUS.dwGuidLights [...]

 WFSBIOCAPS.dwGuidLights [...],

 WFSBIOSETGUIDLIGHT.wGuidLight */

#define WFS_BIO_GUIDANCE_NOT_AVAILABLE (0x00000000)

#define WFS_BIO_GUIDANCE_OFF (0x00000001)

#define WFS_BIO_GUIDANCE_SLOW_FLASH (0x00000004)

#define WFS_BIO_GUIDANCE_MEDIUM_FLASH (0x00000008)

#define WFS_BIO_GUIDANCE_QUICK_FLASH (0x00000010)

#define WFS_BIO_GUIDANCE_CONTINUOUS (0x00000080)

#define WFS_BIO_GUIDANCE_RED (0x00000100)

#define WFS_BIO_GUIDANCE_GREEN (0x00000200)

#define WFS_BIO_GUIDANCE_YELLOW (0x00000400)

#define WFS_BIO_GUIDANCE_BLUE (0x00000800)

#define WFS_BIO_GUIDANCE_CYAN (0x00001000)

#define WFS_BIO_GUIDANCE_MAGENTA (0x00002000)

#define WFS_BIO_GUIDANCE_WHITE (0x00004000)

#define WFS_BIO_GUIDANCE_ENTRY (0x00100000)

#define WFS_BIO_GUIDANCE_EXIT (0x00200000)

/* values of WFSBIOSTATUS.wDevicePosition

 WFSBIODEVICEPOSITION.wPosition */

#define WFS_BIO_DEVICEINPOSITION (0)

#define WFS_BIO_DEVICENOTINPOSITION (1)

#define WFS_BIO_DEVICEPOSUNKNOWN (2)

#define WFS_BIO_DEVICEPOSNOTSUPP (3)

/* values of WFSBIOSTATUS.wAntiFraudModule */

#define WFS_BIO_AFMNOTSUPP (0)

#define WFS_BIO_AFMOK (1)

#define WFS_BIO_AFMINOP (2)

#define WFS_BIO_AFMDEVICEDETECTED (3)

#define WFS_BIO_AFMUNKNOWN (4)

/* values of WFSBIOCAPS.fwType */

#define WFS_BIO_TYPE_FACIAL_FEATURES (0x0001)

#define WFS_BIO_TYPE_VOICE (0x0002)

#define WFS_BIO_TYPE_FINGERPRINT (0x0004)

#define WFS_BIO_TYPE_FINGERVEIN (0x0008)

#define WFS_BIO_TYPE_IRIS (0x0010)

#define WFS_BIO_TYPE_RETINA (0x0020)

#define WFS_BIO_TYPE_HAND_GEOMETRY (0x0040)

CWA 16926-78:2023 (E)

51

#define WFS_BIO_TYPE_THERMAL_FACE (0x0080)

#define WFS_BIO_TYPE_THERMAL_HAND (0x0100)

#define WFS_BIO_TYPE_PALM_VEIN (0x0200)

#define WFS_BIO_TYPE_SIGNATURE (0x0400)

/* values of WFSBIOCAPS.fwDataFormats and

 WFSBIODATATYPE.dwFormat and

 WFSBIOREAD.lpdwDataFormats */

#define WFS_BIO_ISOFID (0x0001)

#define WFS_BIO_ISOFMD (0x0002)

#define WFS_BIO_ANSIFID (0x0004)

#define WFS_BIO_ANSIFMD (0x0008)

#define WFS_BIO_QSO (0x0010)

#define WFS_BIO_WSQ (0x0020)

#define WFS_BIO_RESERVED_RAW_1 (0x0040)

#define WFS_BIO_RESERVED_TEMPLATE_1 (0x0080)

#define WFS_BIO_RESERVED_RAW_2 (0x0100)

#define WFS_BIO_RESERVED_TEMPLATE_2 (0x0200)

#define WFS_BIO_RESERVED_RAW_3 (0x0400)

#define WFS_BIO_RESERVED_TEMPLATE_3 (0x0800)

/* values of WFSBIOCAPS.fwEncryptionAlgorithms and

 WFSBIODATATYPE.dwAlgorithm */

#define WFS_BIO_CRYPT_NONE (0x0000)

#define WFS_BIO_CRYPT_TRIDESECB (0x0001)

#define WFS_BIO_CRYPT_TRIDESCBC (0x0002)

#define WFS_BIO_CRYPT_TRIDESCFB (0x0004)

#define WFS_BIO_CRYPT_RSA (0x0008)

/* values of WFSBIOCAPS.fwStorage */

#define WFS_BIO_STORAGE_NONE (0x0000)

#define WFS_BIO_STORAGE_SECURE (0x0001)

#define WFS_BIO_STORAGE_CLEAR (0x0002)

/* values of WFSBIOCAPS.fwPersistenceModes and

 WFSBIOSTATUS.dwDataPersistence and

 WFSBIOPERSISTDATA.dwPersistenceMode */

#define WFS_BIO_PS_NONE (0x0000)

#define WFS_BIO_PS_PERSIST (0x0001)

#define WFS_BIO_PS_AUTOCLEAR (0x0002)

/* values of WFSBIOCAPS.dwMatchSupported */

#define WFS_BIO_MTC_STORED_MATCH_NONE (0x0000)

#define WFS_BIO_MTC_STORED_MATCH (0x0001)

#define WFS_BIO_MTC_COMBINED_MATCH (0x0002)

/* values of WFSBIOCAPS.fwScanModes and

 WFSBIOREAD.usMode */

#define WFS_BIO_MODE_SCAN (0x0001)

#define WFS_BIO_MODE_MATCH (0x0002)

/* values of WFSBIOCAPS.fwCompareModes and

 WFSBIOMATCH.usCompareMode */

#define WFS_BIO_COMP_NONE (0x0000)

#define WFS_BIO_COMP_VERIFY (0x0001)

#define WFS_BIO_COMP_IDENTIFY (0x0002)

/* values of WFSBIOCAPS.fwClearData and

 WFSBIOCLEAR.fwClearData and

 WFSBIORESET.fwClearData and

 WFSBIODATACLEARED.fwClearData */

#define WFS_BIO_CLR_NONE (0x0000)

CWA 16926-78:2023 (E)

52

#define WFS_BIO_CLR_SCANNEDDATA (0x0001)

#define WFS_BIO_CLR_IMPORTEDDATA (0x0002)

#define WFS_BIO_CLR_SETMATCHDATA (0x0004)

/* values of WFSBIOKEYINFO.dwUse */

#define WFS_BIO_USECRYPT (0x0001)

#define WFS_BIO_USERSAPUBLIC (0x0002)

/* XFS BIO Errors */

#define WFS_ERR_BIO_NOIMPORTEDDATA (-(BIO_SERVICE_OFFSET + 0))

#define WFS_ERR_BIO_READFAILED (-(BIO_SERVICE_OFFSET + 1))

#define WFS_ERR_BIO_MODENOTSUPP (-(BIO_SERVICE_OFFSET + 2))

#define WFS_ERR_BIO_FORMATNOTSUPP (-(BIO_SERVICE_OFFSET + 3))

#define WFS_ERR_BIO_INVALIDDATA (-(BIO_SERVICE_OFFSET + 4))

#define WFS_ERR_BIO_CAPACITYEXCEEDED (-(BIO_SERVICE_OFFSET + 5))

#define WFS_ERR_BIO_INVALIDIDENTIFIER (-(BIO_SERVICE_OFFSET + 6))

#define WFS_ERR_BIO_NOCAPTUREDDATA (-(BIO_SERVICE_OFFSET + 7))

#define WFS_ERR_BIO_KEYNOTFOUND (-(BIO_SERVICE_OFFSET + 8))

#define WFS_ERR_BIO_INVALID_PORT (-(BIO_SERVICE_OFFSET + 9))

#define WFS_ERR_BIO_POWERSAVETOOSHORT (-(BIO_SERVICE_OFFSET + 10))

#define WFS_ERR_BIO_COMMANDUNSUPP (-(BIO_SERVICE_OFFSET + 11))

#define WFS_ERR_BIO_SYNCHRONIZEUNSUPP (-(BIO_SERVICE_OFFSET + 12))

#define WFS_ERR_BIO_INVALIDCOMPAREMODE (-(BIO_SERVICE_OFFSET + 13))

#define WFS_ERR_BIO_INVALIDTHRESHOLD (-(BIO_SERVICE_OFFSET + 14))

/*===*/

/* BIO Info Command Structures and variables */

/*===*/

typedef struct _wfs_bio_status

{

 WORD fwDevice;

 DWORD dwSubject;

 BOOL bCaptured;

 DWORD dwDataPersistence;

 DWORD dwRemainingStorage;

 LPSTR lpszExtra;

 WORD wDevicePosition;

 DWORD dwGuidLights[WFS_BIO_GUIDLIGHTS_SIZE];

 USHORT usPowerSaveRecoveryTime;

 WORD wAntiFraudModule;

} WFSBIOSTATUS, *LPWFSBIOSTATUS;

typedef struct _wfs_bio_caps

{

 WORD wClass;

 DWORD fwType;

 BOOL bCompound;

 USHORT usMaxCapture;

 DWORD dwTemplateStorage;

 DWORD fwDataFormats;

 DWORD fwEncryptionAlgorithms;

 WORD fwStorage;

 DWORD fwPersistenceModes;

 DWORD dwMatchSupported;

 WORD fwScanModes;

 WORD fwCompareModes;

 DWORD fwClearData;

 LPSTR lpszExtra;

 DWORD dwGuidLights[WFS_BIO_GUIDLIGHTS_SIZE];

 BOOL bPowerSaveControl;

 BOOL bAntiFraudModule;

 LPDWORD lpdwSynchronizableCommands;

} WFSBIOCAPS, *LPWFSBIOCAPS;

typedef struct _wfs_bio_data_type

CWA 16926-78:2023 (E)

53

{

 DWORD dwFormat;

 DWORD dwAlgorithm;

 LPSTR lpszKeyName;

} WFSBIODATATYPE, *LPWFSBIODATATYPE;

typedef struct _wfs_bio_storage

{

 USHORT usIdentifier;

 LPWFSBIODATATYPE lpType;

} WFSBIOSTORAGE, *LPWFSBIOSTORAGE;

typedef struct _wfs_bio_storage_list

{

 USHORT usCount;

 LPWFSBIOSTORAGE *lppStorageList;

} WFSBIOSTORAGELIST, *LPWFSBIOSTORAGELIST;

typedef struct _wfs_bio_key_info

{

 LPSTR lpszKeyName;

 DWORD dwUse;

 BOOL bLoaded;

} WFSBIOKEYINFO, *LPWFSBIOKEYINFO;

/*===*/

/* BIO Execute Command Structures */

/*===*/

typedef struct _wfs_bio_read

{

 USHORT usCount;

 LPWFSBIODATATYPE *lppTypes;

 USHORT usNumCaptures;

 USHORT usMode;

} WFSBIOREAD, *LPWFSBIOREAD;

typedef struct _wfs_bio_hex_data

{

 USHORT usLength;

 LPBYTE lpbData;

} WFSXBIODATA, *LPWFSXBIODATA;

typedef struct _wfs_bio_data

{

 LPWFSBIODATATYPE lpType;

 LPWFSXBIODATA lpxData;

} WFSBIODATA, *LPWFSBIODATA;

typedef struct _wfs_bio_read_data

{

 USHORT usCount;

 LPWFSBIODATA *lppBioDataList;

} WFSBIOREADDATA, *LPWFSBIOREADDATA;

typedef struct _wfs_bio_import_data

{

 USHORT usCount;

 LPWFSBIODATA *lppBioDataList;

} WFSBIOIMPORTDATA, *LPWFSBIOIMPORTDATA;

typedef struct _wfs_bio_match

{

 USHORT usCompareMode;

 USHORT usIdentifier;

 USHORT usMaximum;

 USHORT usThreshold;

} WFSBIOMATCH, *LPWFSWFSBIOMATCH;

typedef struct _wfs_bio_candidate

CWA 16926-78:2023 (E)

54

{

 USHORT usConfidenceLevel;

 USHORT usIdentifier;

 LPWFSBIODATA lpData;

} WFSBIOCANDIDATE, *LPWFSBIOCANDIDATE;

typedef struct _wfs_bio_match_result

{

 USHORT usCount;

 LPWFSBIOCANDIDATE *lppTemplateList;

} WFSBIOMATCHRESULT, *LPWFSBIOMATCHRESULT;

typedef struct _wfs_bio_clear

{

 DWORD fwClearData;

} WFSBIOCLEAR, *LPWFSBIOCLEAR;

typedef struct _wfs_bio_reset

{

 DWORD fwClearData;

} WFSBIORESET, *LPWFSBIORESET;

typedef struct _wfs_bio_persist_data

{

 DWORD dwPersistenceMode;

} WFSBIOPERSISTDATA, *LPWFSBIOPERSISTDATA;

typedef struct _wfs_bio_set_guidlight

{

 WORD wGuidLight;

 DWORD dwCommand;

} WFSBIOSETGUIDLIGHT, *LPWFSBIOSETGUIDLIGHT;

typedef struct _wfs_bio_power_save_control

{

 USHORT usMaxPowerSaveRecoveryTime;

} WFSBIOPOWERSAVECONTROL, *LPWFSBIOPOWERSAVECONTROL;

typedef struct _wfs_bio_synchronize_command

{

 DWORD dwCommand;

 LPVOID lpCmdData;

} WFSBIOSYNCHRONIZECOMMAND, *LPWFSBIOSYNCHRONIZECOMMAND;

/*===*/

/* BIO Events Structures */

/*===*/

typedef struct _wfs_bio_data_cleared

{

 DWORD fwClearData;

} WFSBIODATACLEARED, *LPWFSBIODATACLEARED;

typedef struct _wfs_bio_device_position

{

 WORD wPosition;

} WFSBIODEVICEPOSITION, *LPWFSBIODEVICEPOSITION;

typedef struct _wfs_bio_power_save_change

{

 USHORT usPowerSaveRecoveryTime;

} WFSBIOPOWERSAVECHANGE, *LPWFSBIOPOWERSAVECHANGE;

/* restore alignment */

#pragma pack (pop)

#ifdef __cplusplus

CWA 16926-78:2023 (E)

55

} /*extern "C"*/

#endif

#endif /* __INC_XFSBIO__H */

